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In Chapter 12 we observed that electrons in a completely filled band can carry no
current. Within the independent electron model this result is the basis for the dis-
tinction between insulators and metals: In the ground state of an insulator all bands
are either completely filled or completely empty; in the ground state of a metal at
least one band is partially filled.

We can characterize insulators by the energy gap, E,, between the top of the highest
filled band(s) and the bottom of the lowest empty band(s) (see Figure 28.1). A solid
with an energy gap will be nonconducting at T = 0 (unless the DC electric field is
so strong and the energy gap so minute that electric breakdown can occur (Eq. (12.8))
or unless the AC field is of such high frequency that hiw exceeds the energy gap).

Figure 28.1
(a) In an insulator there is a
Unoccupied [_] 3 & region .of forbid(.]cn energies
AL separating the highest occu-
Oceupied [ 7] E pied and lowest unoccupied
levels. (b) In a metal the
T boundary occurs in a region
i of allowed levels. This is
2(£) ——+g(e) indicated schematically by
(a) () plotting the density of levels
(horizontally) vs. energy (ver-

tically).

However, when the temperature is not zero there is a nonvanishing probability
that some electrons will be thermally excited across the energy gap into the lowest
unoccupied bands, which are called, in this context, the conduction bands, leaving
behind unoccupied levels in the highest occupied bands, called valence bands. The
thermally excited electrons are capable of conducting, and hole-type conduction can
occur in the band out of which they have been excited.

Whether such thermal excitation leads to appreciable conductivity depends criti-
cally on the size of the energy gap, for the fraction of electrons excited across the gap
at temperature T is, as we shall see, roughly of order e %¢/**8T, With an energy gap
of 4 eV at room temperature (kzT ~ 0.025 eV) this factor is e % >~ 1073%, and
essentially no electrons are excited across the gap. If, however, E, is 0.25 eV, then the
factor at room temperature is e~ ~ 1072, and observable conduction will occur.

Solids that are insulators at T = 0, but whose energy gaps are of such a size that
thermal excitation can lead to observable conductivity at temperatures below the
melting point, are known as semiconductors. Evidently the distinction between a
semiconductor and an insulator is not a sharp one, but roughly speaking the energy
gap in most important semiconductors is less than 2 eV and frequently as low as a
few tenths of an electron volt. Typical room temperature resistivities of semicon-
ductors are between 1073 and 10° ohm-cm (in contrast to metals, where p ~ 107¢
ohm-cm, and good insulators, where p can be as large as 10?2 ohm-cm).

Since the number of electrons excited thermally into the conduction band (and
therefore the number of holes they leave behind in the valence band) varies exponen-
tially with 1/T, the electrical conductivity of a semiconductor should be a very rapidly
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increasing function of temperature. This is in striking contrast to the case of metals.
The conductivity of a metal (Eq. (1.6)),

e (8.1)

declines with increasing temperature, for the density of carriers n is independent of
temperature, and all temperature dependence comes from the relaxation time 7,
which generally decreases with increasing temperature because of the increase in
electron-phonon scattering. The relaxation time in a semiconductor will also decrease
with increasing temperature, but this effect (typically described by a power law) is
quite overwhelmed by the very much more rapid increase in the density of carriers
with increasing temperature.'

Thus the most striking feature of semiconductors is that, unlike metals, their
electrical resistance declines with rising temperature; i.e., they have a “negative coeffi-
cient of resistance.” Tt was this property that first brought them to the attention of
physicists in the early nineteenth century.? By the end of the nineteenth century a
considerable body of semiconducting lore had been amassed; it was observed that
the thermopowers of semiconductors were anomalously Jarge compared with those
of metals (by a factor of 100 or so), that semiconductors exhibited the phenomenon
of photoconductivity, and that rectifying effects could be obtained at the junction of
two unlike semiconductors. Early in the twentieth century, measurements of the Hall
effect® were made confirming the fact that the temperature dependence of the con-
ductivity was dominated by that of the number of carriers, and indicating that in
many substances the sign of the dominant carrier was positive rather than negative.

Phenomena such as these were a source of considerable mystery until the full
development of band theory many years later. Within the band theory they find
simple explanations. For example, photoconductivity (the increase in conductivity
produced by shining light on a material) is a consequence of the fact that if the band

1 Thus the conductivity of a semiconductor is not a good measure of the collision rate, as itisina
metal. It is often advantageous to separate from the conductivity a term whose temperature dependence
reflects only that of the collision rate. This is done by defining the mobility, u, of a carrier, as being the
ratio of the drift velocity it achieves in a field E, to the field strength: v; = pE. If the carriers have density
nand charge g, the current density will be j = ngu,, and therefore the conductivity is related to the mobility
by 6 = ngp. The concept of mobility has little independent use in discussions of metals, since it is related
to the conductivity by a temperature-independent constant. However, it plays an important role in
descriptions of semiconductors {and any other conductors where the carrier density can vary, such as ionic
solutions), enabling one to disentangle two distinct sources of temperature dependence in the conductivity.
The usefulness of the mobility will be illustrated in our discussion of mhomogencous semiconductors in
Chapter 29.

2 M. Faraday, Experimental Researches on Electricity, 1839, Facsimile Reprint by Taylor and Francis,
London. R. A. Smith, Semiconductors, Cambridge University Press, 1964, provides one of the most pleasant
introductions to the subject available. Most of the information in our brief historical survey is drawn
from it

3 One might expect that the number of excited electrons would equal the number of holes left behind,
so that the Hall effect would yield little direct information on the number of carriers. However, as we
shall see, the number of electrons need not equal the number of holes in an impure semiconductor, and
these were the only ones available at the time of the early experiments.
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gap is small, then visible light can excite electrons across the gap into the conduction
band, resulting in conduction by those electrons and by the holes left behind. The
thermopower, to take another example, is roughly a hundred times larger in a semi-
conductor than in a metal. This is because the density of carriers is so low in a
semiconductor that they are properly described by Maxwell-Boltzmann statistics (as
we shall see below). Thus the factor of 100 is the same factor by which the early
theories of metals (prior to Sommerfeld’s introduction of Fermi-Dirac statistics)
overestimated the thermopower (page 25).

The band theoretic explanations of these and other characteristic semiconducting
properties will be the subject of this chapter and the next.

Compilation of reliable information on semiconductors in the early days was
substantially impeded by the fact that data are enormously sensitive to the purity
of the sample. An example of this is shown in Figure 28.2, where the resistivity of
germanium is plotted vs. T for a variety of impurity concentrations. Note that con-
centrations as low as parts in 10® can lead to observable effects, and that the resistivity
can vary at a given temperature by a factor of 10'?, as the impurity concentration
changes by only a factor of 10%. Note also that, for a given impurity concentration,
the resistivity eventually falls onto a common curve as the temperature increases.
This latter resistivity which is evidently the resistivity of an ideal perfectly pure
sample, is known as the intrinsic resistivity, while the data for the various samples,
except at temperatures so high that they agree with the intrinsic curve, are referred
to as extrinsic properties. Quite generally, a semiconductor is intrinsic if its electronic
properties are dominated by electrons thermally excited from the valence to the con-
duction band, and extrinsic if its electronic properties are dominated by electrons
contributed to the conduction band by impurities (or captured from the valence band
by impurities) in a manner to be described below. We shall return shortly to the
question of why semiconducting properties are so very sensitive to the purity of the

specimen.

EXAMPLES OF SEMICONDUCTORS

Semiconducting crystals come primarily from the covalent class of insulators.* The
simple semiconducting elements are from column IV of the periodic table, silicon
and germanium being the two most important elemental semiconductors. Carbon,
in the form of diamond, is more properly classified as an insulator, since its energy
gap is of order 5.5 eV. Tin, in the allotropic form of grey tin, is semiconducting, with
a very small energy gap. (Lead, of course, is metallic) The other semiconducting
elements, red phosphorus, boron, selenium, and tellurium, tend to have highly com-
plex crystal structures, characterized, however, by covalent bonding.

In addition to the semiconducting elements there is a variety of semiconducting
compounds. One broad class, the TT1-V semiconductors, consists of crystals of the
zincblende structure (page 81) composed of elements from columns I1T and V of the

4+ Among the various categories of insulating crystals, the covalent erystals have a spatial distribution

of electronic charge most similar to metals. (See Chapter 19.)
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Figure 28.2
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The resistivity of antimony-doped germanium as a function of 1/7 for several impurity con-
centrations. (From H. J. Fritzsche, J. Phys. Chem. Solids 6,69 (1958).)

periodic table. As described in Chapter 19, the bonding in such compounds is also
predominantly covalent. Semiconducting crystals made up of elements from columns
IT and VI begin to have a strong ionic as well as a covalent character. These are
known as polar semiconductors, and can have either the zincblende structure or, as
in the case of lead selenide, telluride, or sulfide, the sodium chloride structure more
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characteristic of ionic bonding. There are also many far more complicated semi-
conducting compounds.

Some examples of the more important semiconductors are given in Table 28.1.
The energy gaps quoted for each are reliable to within about 5 percent. Note that
the energy gaps are all temperature-dependent, varying by about 10 percent between
0 K and room temperature. There are two main sources of this temperature de-
pendence. Because of thermal expansion the periodic potential experienced by the
electrons (and hence the band structure and the energy gap) can vary with temperature.
In addition, the effect of lattice vibrations on the band structure and energy gap® will
also vary with temperature, reflecting the temperature dependence of the phonon
distribution. In general these two effects are of comparable importance, and lead to
an energy gap that is linear in T at room temperature and quadratic at very low
temperatures (Figure 28.3).

Table 28.1
ENERGY GAPS OF SELECTED SEMICONDUCTORS

E, (LINEAR

MATERIAL T HE?:’OO K T _EQO K) EXTRAPOLATION s

(T = ) (T= ) 10T = 0) DOWN TO
Si 1.12 eV 1.17 1.2 200K
Ge 0.67 0.75 0.78 150
PbS 0.37 0.29 0.25
PbSe 0.26 0.17 0.14 20
PbTe 029 0.19 0.17
InSb 0.16 0.23 0.25 100
GaSb 0.69 0.79 0.80 75
AlSb 1.5 L6 1.7 80
InAs 0.35 043 044 80
InP 13 1.4 80
GaAs 1.4 1.5
GaP 22 24
Grey Sn 0.1
Grey Se 1.8
Te 0.35
B 1.5
C (diamond) 5.5

Sources: C. A. Hogarth, ed., Marerials Used in Semiconductor Devices, Interscience, New York,
1965; O. Madelung, Physics of 111-V Compounds, Wiley, New York, 1964; R. A. Smith, Semi-
conductors, Cambridge University Press, 1964,

The energy gap can be measured in several ways. The optical properties of the
crystal are one of the most important sources of information. When the frequency
of an incident photon becomes large enough for hw to exceed the energy gap, then,
just as in metals (sec pages 293, 294) there will be an abrupt increase in the absorption

5 Via, for example, the kinds of effects described in Chapter 26.
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Typical temperature depen-
dence of the energy gap of a
semiconductor. Values of E,
Ef0), and E 300 K) for
several maternials are listed
in Table 28.1.
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of incident radiation. If the conduction band minimum occurs at the same point in
k-space as the valence band maximum, then the energy gap can be directly determined
from the optical threshold. If, as is often the case, the minima and maxima occur at
different points in k-space, then for crystal momentum to be conserved a phonon
must also participate in the process,® which is then known as an “indirect transition”
(Figure 28.4). Since the phonon will supply not only the missing crystal momentum

Conduction band

E,
Valence band /V;!:‘n:ehand\
k I k
@) (®)

Figure 28.4

Photon absorption via (a) direct and (b) indirect transitions. In (a) the optical threshold is at
@ = E,/h;in(b)it occurs at Ej/h — {q), since the phonon of wave vector g that must be absorbed
to supply the missing crystal momentum also supplies an energy hie(g).

6 At optical frequencies the crystal momentum supplied by the photon itsell is negligibly small
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hk, but also an energy fuo(k), the photon energy at the optical threshold will be less
than E, by an amount of order hwp. This is typically a few hundredths of an electron
volt, and therefore of little consequence except in semiconductors with very small
energy gaps.’

The energy gap may also be deduced from the temperature dependence of the
intrinsic conductivity, which is predominantly a reflection of the very strong tem-
perature dependence of the carrier densities. These vary (as we shall see below)
essentially as e £9/2*87 50 that if —In (o) is plotted against 1/2k;T, the slope® should
be very nearly the energy gap, E,.

TYPICAL SEMICONDUCTOR BAND STRUCTURES

The electronic properties of semiconductors are completely determined by the com-
paratively small numbers of electrons excited into the conduction band and holes left
behind in the valence band. The electrons will be found almost exclusively in levels
near the conduction band minima, while the holes will be confined to the neighbor-
hood of the valence band maxima. Therefore the energy vs. wave vector relations for
the carriers can generally be approximated by the quadratic forms they assume in
the neighborhood of such extrema:®

2
&k) = & + %Z k(M1 k,  (electrons),
By

2
&(k) = &, — %}: k(M1 k,  (holes). (28.2)
v

Here &, is the energy at the bottom of the conduction band, &, is the energy at the top
of the valence band, and we have taken the origin of k-space to lie at the band maxi-
mum or minimum. If there is more than one maximum or minimum, there will be
one such term for each point. Since the tensor M~ is real and symmetric, one can
find a set of orthogonal principal axes for each such point, in terms of which the
energies have the diagonal forms

ki® | kg® | ks?

— gl , Kav , HeF ;
&k) = & + h (2 + g + 2m3) (electrons),

2 2
&(k) = &, — h? (_k‘ + k* it ki) (holes). (28.3)

2m,  2m, 2my

7 To extract a really accurate band gap from the optical absorption data. however. it is necessary
to determine the phonon spectrum and use it to analyze the indirect transitions.

& In deducing the energy gap in this way, however, one must remember that at room temperature
the gaps of most semiconductors have a linear variation with temperature. I E, = E, — AT, then the slope
of the graph will be not E, but E,, the linear extrapolation of the room temperature gap to zero temperature
(Figure 28.3). Values of E, extracted from this linear extrapolation procedure are also given in Table 28.1.

¢ The inverse of the matrix of coefficients in (28.2) is called M because it is a special case of the general
effective mass tensor introduced on page 228. The electron mass tensor will not, of course, be the same
as the hole mass tensor, but to avoid a multiplicity of subscripts we use the single generic symbol M for
both.
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Thus the constant energy surfaces about the extrema are ellipsoidal in shape, and
are generally specified by giving the principal axes of the ellipsoids, the three “effective
masses,” and the Jocation in k-space of the ellipsoids. Some important examples are:

Silicon The crystal has the diamond structure, so the first Brillouin zone is the
truncated octahedron appropriate to a face-centered cubic Bravais lattice. The con-
duction band has six symmetry-related minima at points in the {100} directions,
about 80 percent of the way to the zone boundary (Figure 28.5). By symmetry each

Figure 28.5

Constant-energy surfaces near the conduction band minima in
silicon. There are six symmetry-related ellipsoidal pockets. The
long axes are directed along {100} directions.

of the six ellipsoids must be an ellipsoid of revolution about a cube axis. They are
quite cigar-shaped, being elongated along the cube axis. In terms of the frec electron
mass m, the effective mass along the axis (the longitudinal effective mass) is m; =~
1.0m while the effective masses perpendicular to the axis (the transverse effective mass)
are my ~ 0.2m. There are two degenerate valence band maxima, both located at
< = 0, which are spherically symmetric to the extent that the ellipsoidal expansion
. is valid, with masses of 0.49m and 0.16m (Figure 28.6).

Figure 28.6 I
Energy bands in silicon. Note the conduction band minimum along I
[100] that gives rise to the ellipsoids of Figure 28.5. The valence {

band maximum occurs at k = 0, where two degenerate bands with
different curvatures meet, giving rise to “light holes” and “heavy
holes.” Note also. the third band. only 0.044 eV below the valence
band maximum. This band is separated from the other two only
by spin-orbit coupling. At temperatures on the order of room
temperature (ks T = 0.025 eV) it too may be a significant source of
carriers. (From C. A. Hogarth, ed., Materials Used in Semiconductor
Devices, Interscience, New York, 1965.)

Energy (eV)
.!L__

[Il.I] [000] [100]

Germanium The crystal structure and Brillouin zone are as in silicon. However, the
conduction band minima now occur at the zone boundaries in the ¢111) directions.
Minima on paralle] hexagonal faces of the zone represent the same physical levels,
so there are four symmetry-related conduction band minima. The ellipsoidal constant
energy surfaces are ellipsoids of revolution elongated along the {111) directions,
with effective masses m; ~ 1.6m, and m; =~ 0.08m (Figure 28.7). There are again two
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Figure 28.7

Constant-energy surfaces near the conduction band minima in germa-
nium. There are eight symmetry-related half ellipsoids with long axes
along {111} directions centered on the midpoints of the hexagonal
zone faces. With a suitable choice of primitive cell in k-space these can
be represented as four ellipsoids, the half ellipsoids on opposite faces
being joined together by translations through suitable reciprocal
lattice vectors.

degencrate valence bands, both with maxima at k = 0, which arc spherically sym-
metric in the quadratic approximation with effective masses of 0.28m and 0.044m
(Figure 28.8).

Figure 28.8

Energy bands in germanium. Note the conduction band
minimum along [111] at the zone boundary that gives rise to
the four ellipsoidal pockets of Figure 28.7. The valence band
maximum, as in silicon, is at k = 0, where two degenerate
bands with different curvatures meet, giving rise to two pockets
1 : of holes with distinct effective masses. (From C. A. Hogarth,
ed., Materials Used in Semiconductor Devices, Interscience,
0.67 l New York, 1965.)
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Indiumn antimonide This compound, which has the zincblende structure, is interesting
because all valence band maxima and conduction band minima are at k = 0. The en-
ergy surfaces are therefore spherical. The conduction band effective mass is very small,
m* 2 0,015m. Information on the valence band masses is less unambiguous, but there
appear to be two spherical pockets about k = 0, one with an effective mass of about
0.2m (heavy holes) and another with effective mass of about 0.015m (light holes).

CYCLOTRON RESONANCE

The effective masses discussed above are measured by the technique of cyclotron
resonance. Consider an electron close enough to the bottom of the conduction band
(or top of the valence band) for the quadratic expansion (28.2) to be valid. In the
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presence of a magnetic field H the semiclassical equations of motion (12.32) and
(12.33) imply that the velocity v(k) obeys the single set of equations

dv e

=T -v x H. 28.4

dt 4 c ! &
Inaconstant uniform field (taken along the z-axis) it is not difficult to show (Problem 1)
that (28.4) has an oscillatory solution

v = Revge ™, (28.5)
provided that
H
0= (28.6)

where m*, the “cyclotron effective mass,” is given by

det M2
® = . 28.
m ( M. ) (28.7)

This result can also be written in terms of the eigenvalues and principal axes of the
mass tensor as (Problem 1):

. / my My
AY A2my + By’my + Ay%my’

(28.8)

where the H, are the components along the three principal axes of a unit vector
parallel to the field. s

Note that the cyclotron frequency depends, for a given ellipsoid, on the orientation
of the magnetic field with respect to that ellipsoid, but not on the initial wave vector
or energy of the electron. Thus for a given orientation of the crystal with respect to
the field, all electrons in a given ellipsoidal pocket of conduction band electrons
(and, by the same token, all holes in a given ellipsoidal pocket of valence band holes)
precess at a frequency entirely determined by the effective mass tensor describing
that pocket. There will therefore be a small number of distinct cyclotron frequencies.
By noting how these resonant frequencies shift as the orientation of the magnetic
field is varied, one can extract from (28.8) the kind of information we quoted above.

To observe cyclotron resonance it is essential that the cyclotron frequency (28.6)
be larger than or comparable to the collision frequency. As in the case of metals,
this generally requires working with very pure samples at very low temperatures,
to reduce both impurity scattering and phonon scattering to a minimum. Under
such conditions the electrical conductivity of a semiconductor will be so small that
(in contrast to the case of a metal (page 278)) the driving electromagnetic field can
penetrate far enough into the sample to excite the resonance without any difficulties
associated with a skin depth. On the other hand, under such conditions of low
temperatures and purity the number of carriers available in thermal equilibrium
1o participate in the resonance may well be so small that carriers will have to be
created by other means—such as photoexcitation. Some typical cyclotron resonance
data are shown in Figure 28.9.
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Typical cyclotron resonance signals in (a) germanium and (b) silicon. The field lies in a (110)
plane and makes an angle with the [001] axis of 60" (Ge) and 30° (Si). (From G. Dresselhaus et al.,
Phys. Rev. 98, 368 (1955).)

NUMBER OF CARRIERS IN THERMAL EQUILIBRIUM

The most important property of any semiconductor at temperature Tis the number
of electrons per unit volume in the conduction band, n,, and the number of holes'®
per unit volume in the valence band, p,. The determination of these as a function
of temperature is a straightforward, though sometimes algebraically complicated,
exercise in the application of Fermi-Dirac statistics to the appropriate set of one-
electron levels. .

The values of n(T) and p(T) depend critically, as we shall see, on the presence of
impurities. However, there are certain general relations that hold regardless of the
purity of the sample, and we consider these first. Suppose the density of levels
(page 143) is g(€) in the conduction band and g,(€) in the valence band. The effect
of impurities, as we shall see below, is to introduce additional levels at energies
between the top of the valence band, &,, and the bottom of the conduction band, &,
without, however, appreciably altering the form of g(€) and g/&). Since conduction
is entirely due to electrons in conduction band levels or holes in valence band levels,
regardless of the concentration of impurities the numbers of carriers present at
temperature T will be given by

ﬂa: [
ﬂc{Tl o e d{'_v gc(S} m’
re, l
pAT) = ds g,(8) (1 o= ﬁ)
™ E‘IJ l
= s y de g,(€) ST 1" (28.9)

10 Hole densities are conventionally denoted by the letter p (for positive). This widely used notation

exploits the coincidence that the n denoting the mumber density of electrons can also be regarded as standing
for “negative.”
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Impurities affect the determination of n. and p, only through the value of the
chemical potential’! p to be used in Eq. (28.9). To determine u one must know
something about the impurity levels. However, one can extract some useful informa-
tion from (28.9) which is independent of the precise value of the chemical potential,
provided only that it satisfies the conditions:

& — p>» kgT,
p— &, » kgT. (28.10)

There will be a range of values of y for which (28.10) holds even for energy gaps
E, = 8§ — &, as small as a few tenths of an electron volt and temperatures as high
as room temperature. Our procedure will be to assume the validity of (28.10), use it
to simplify (28.9), and then, from the values of n, and p, so obtained and the appro-
priate information about possible impurity levels, compute the actual value of the
chemical potential to check whether it does indeed lie in the range given by (28.10).
If it does, the semiconductor is described as “nondegenerate,” and the procedure is
a valid one. If it does not, one is dealing with a “degenerate semiconductor” and must
work directly with Eq. (28.9) without making the simplifications implied by (28.10).

Given Eq. (28.10), then since every conduction band level exceeds &, and every
valence band level is less than &, we may simplify the statistical factors in (28.9):

1
~ g~ E~mikpT P s
QE-RIkT | € s £E> &
1 —(u—E)kpT
=) e SNERE £ <8, (28.11)

S OkT | |

Equations (28.9) thereby reduce to

n(T) = N(T)e™Ce#kaT, :
poT) = P(T)e ¥ ksT (28.12)

where

N(T) = _[ de g (E)e™ € BT,
ﬁ‘.
F'IJ
P(T) :_[ de g(&)e ™ Com kBT, (28.13)

Because the ranges of integration in (28.13) include the points where the arguments
of the exponentials vanish, N(7") and P,(T) are relatively slowly varying functions

' It is the widespread practice to refer to the chemical potential of a semiconductor as “the Fermi
level,” a somewhat unfortunate terminclogy. Since the chemical potential almost always lies in the energy
gap, there is no one-electron level whose energy is actually at “the Fermi level™ (in contrast to the case
of a metal). Thus the usual definition of the Fermi level (that energy below which the one-electron levels
are occupied and above which they are unoccupied in the ground state of a metal) does not specify a unique
energy in the case of a semiconductor: Any energy in the gap separates occupied from unoccupied levels
at T = 0. The term “Fermi level” should be regarded as nothing more than a synonym for “chemical
potential,” in the context of semiconductors.
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of temperature, compared with the exponential factors they multiply in (28.12). This
is their most important feature. Usually, however, one can evaluate them explicitly.
Because of the exponential factors in the integrands of (28.13) only energies within
kgT of the band edges contribute appreciably, and in this range the quadratic approx-
imation, (28.2) or (28.3), is generally excellent. The level densities can then be taken
to be (Problem 3):

——m, >?
e {8} = /2|8 — &, = (28.19)
and the integrals (28.13) then give
1 (2mkpT\*?
N =7 (_n?_) ’

32
ZHIka T) (28, lS)

1
Pam =5 (T

Here m_? is the product of the principal values of the conduction band effective mass
tensor (ie., its determinant),'* and m,? is similarly defined.
Equation (28.15) can be cast in the numerically convenient forms:

32 32
m = 25(2)" (o) % 10w, |
[
!
|'

m 300 K
m,\*? RS 193 1
P(T) = 2.5 (-”-1-) (566' 1{) x 10'%/cm?, | (28.16)

where T is to be measured in degrees Kelvin. Since the exponential factors in (28.12)
are less than unity by at least an order of magnitude, and since m/m and m,/m are
typically of the order of unity, Eq. (28.16) indicates that 10'® or 10*? carriers/cm? is an
absolute upper limit to the carrier concentration in a nondegenerate semiconductor.

We still cannot infer n(T) and p(T) from (28.12) until we know the value of the
chemical potential u. However, the p dependence disappears from the product of the
two densities:

np, = NP,e™ kT
= N P8, (28.17)

This result (sometimes called the “law of mass action™?) means that at a given
temperature it suffices to know the density of one carrier type to determine that of
the other. How this determination is made depends on how important the impurities
are as a source of carriers.

12 If there is more than one conduction band minimum one must add together terms of the form

(28.14) and (28.15) for each minimum. These sums will continue to have the same forms as (28.14) and
(28.15), provided that the definition of m_ is altered to m 2 — ¥ m 22

13 The analogy with chemical reactions is quite precise: A carrier is provided by the dissociation
of a combined electron and hole.
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Intrinsic Case

If the crystal is so pure that impurities contribute negligibly to the carrier densities,
one speaks of an “intrinsic semiconductor.” In the intrinsic case. conduction band
electrons can only have come from formerly occupied valence band levels, leaving
holes behind them. The number of conduction band electrons is therefore equal to
the number of valence band holes:

n{T) = pdT) = n{T). (28.18)

Since n, = p,, we may write their common value n; as (n.p.)"/2. Equation (28.17)
then gives
n{T) = [N(T)P(T)]"2e Eg' 28T, (28.19)

or, from (28.15) and (28.16):

1 (2k5T\??
n{T) = 4(7)

mN3* (N T \¥2
-1 c v ,— Eg. 2kpT 19 3
25 (—m) (—m) 0K e "o x [0 /em”. : (28.20)

["lt,np)l;4e'“£gf2kgf

We may now establish in the intrinsic case the condition for the validity of assump-
tion (28.10) on which our analysis has been based. Defining y; to be the value of the
chemical potential in the intrinsic case, we find that Eqs. (28.12) give values of n, and
p, equal to n; (Eq. (28.19)), provided that

P
p=p =8 +3E, + tksgTln (h—r) (28.21)
or, from Eq. (28.15),
i = &, + 4E, + 3ksTIn (%) (28.22)

This asserts that as T — 0, the chemical potential g lies precisely in the middle
of the energy gap. Furthermore, since In (mn,/in.) is 2 number of order unity, g will
not wander from the center of the energy gap by more than order k;T. Consequently,
at temperatures kT small compared with E,, the chemical potential will be found
far from the boundaries of the forbidden region, & and &,, compared with kzT (Figure
28.10), and the condition for nondegeneracy (28.10) will be satisfied. Therefore (28.20)
is a valid evaluation of the common value of n_ and p, in the intrinsic case, provided
only that E, is large compared with kgT, a condition that is satisfied in almost all
semiconductors at room temperature and below.

Extrinsic Case: Some General Features

If impurities contribute a significant fraction of the conduction band electrons and/or
valence band holes, one speaks of an “extrinsic semiconductor.” Because of these
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Figure 28.10
£ : Inan intrinsic semiconductor
with an energy gap E, large
compared with kg7, the
chemical potential u lies

& : - within order kgT of the center
= of the energy gap, and is
Gl therefore far compared with
. kgT from both boundaries of
& 15| E>>kyT the gap at & and §&,.
-8,
£
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added sources of carriers the density of conduction band electrons need no longer
be equal to the density of valence band holes:

Ne — po = An # 0. (28.23)

Since the law of mass action Eq. (28.17) holds regardless of the importance of
impurities, we can use the definition (28.19) of n{T) to write quite generally,

np, = n. (28.24)

Equations (28.24) and (28.23) permit one to express the carrier densities in the extrinsic
case in terms of their intrinsic values n; and the deviation An from intrinsic behavior:

i - 12
{p‘} = %[(&ﬂ)2 + 4ni2:| + 3An. (28.25)

The quantity An/n;, which measures the importance of the impurities as a source
of carriers, can be given a particularly simple expression as a function of chemical
potential g, if we note that Eqgs. (28.12) have the form'*

", = Sumidy . po= e_m”_"“n,-. (28.26)
Therefore
A .
T;’ = 2sinh B — p). (28.27)

14 To verify these relations one need nor substitute the explicit definitions of n; and g;: it is enough
to note that n, and p, are proportional to exp (fy) and exp (— fp), respectively, and that both reduce to
n; when p = p,.
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We have noted that if the energy gap E, is large compared with kgT, then the
intrinsic chemical potential g; will satisfy the assumption (28.10) of nondegeneracy.
But Eq. (28.27) requires that if y; is far from &, or &, on the scale of kgT, then pmust be
as well, unless An is many orders of magnitude larger than the intrinsic carrier density
n;. Thus the nondegeneracy assumption underlying the derivation of (28.27) is valid
when E; » k;T, unless we are in a region of extreme extrinsic behavior.

Note also that when An is large compared with n, then Eq. (28.25) asserts that
the density of one carrier type is essentially equal to An, while that of the other type
is smaller by a factor of order (n,/An)%. Thus when impurities do provide the major
source of carriers, one of the two carrier types will be dominant, An extrinsic semi-
conductor is called “n-type” or “p-type” according to whether the dominant carriers
are electrons or holes.

To complete the specification of the carrier densities in extrinsic semiconductors
one must determine An or p. To do this we must examine the nature of the electronic
levels introduced by the impurities and the statistical mechanics of the occupation
of these levels in thermal equilibrium,

IMPURITY LEVELS

Impurities that contribute to the carrier density of a semiconductor are called donors
if they supply additional electrons to the conduction band, and acceptors if they
supply additional holes to (ie., capture electrons from) the valence band. Donor
impurities are atoms that have a higher chemical valence than the atoms making
up the pure (host) material, while acceptors have a lower chemical valence.
Consider, for example, the case of substitutional impurities in a group IV semi-
conductor. Suppose that we take a crystal of pure germanium, and replace an
occasional germanium atom by its neighbor to the right in the periodic table, arsenic
(Figure 28.11). The germanium ion has charge 4e and contributes four valence
electrons, while the arsenic ion has charge 5e and contributes five valence electrons.
If, to a first approximation, we ignore the difference in structure between the arsenic
and germanium ion cores, we can represent the substitution of an arsenic atom for

- (5 M R (5 ol

1] i f] ] i 11
O =0=@=0=—-0=-=0=— -
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J[eeep— STT—
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Figure 28.11
(a) Schematic representation of a substitutional arsenic (valence 5) donor impurity in a
germanium (valence 4) crystal. (b) The arsenic (As) can be represented as a germanium
atom plus an additional unit of positive charge fixed at the site of the atom (circled dot). (c)
In the semiclassical approximation, in which the pure semiconductor is treated as a homo-
geneous medium, the arsenic impurity is represented as a fixed point charge +e (dot).
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a germanium atom by a slightly less drastic modification, in which the germanium
atom is not removed, but an additional fixed positive charge of e is placed at its
site, along with an additional electron.

This is the general model for a semiconductor doped with donor impurities.
Distributed irregularly’® throughout the perfect pure crystal are N, fixed attractive
centers of charge +e, per unit volume, along with the same number of additional
electrons. As expected, each such center of charge + e can bind'® one of the additional
electrons of charge —e. If the impurity were not embedded in the semiconductor,
but in empty space, the binding energy of the electron would just be the first ionization
potential of the impurity atom, 9.81 eV for arsenic. However (and this is of crucial
importance in the theory of semiconductors), since the impurity is embedded in the
medium of the pure semiconductor, this binding energy is enormously reduced
(to 0.013 eV for the case of arsenic in germanium). This happens for two reasons:

1. The field of the charge representing the impurity must be reduced by the static
dielectric constant € of the semiconductor.'” These are quite large (e ~ 16 in
germanium), being typically between about [0 and 20 but ranging in some cases
as high as 100 or more. The large dielectric constants are consequences of the
small energy gaps. If there were no overall energy gap, the crystal would be a
metal instead of a semiconductor, and the static dielectric constant would be
infinite, reflecting the fact that a static electric field can induce a current in which
electrons move arbitrarily far from their original positions. If the energy gap is
not zero, but small, then the dielectric constant will not be infinite, but can be
quite large, reflecting the relative ease with which the spatial distribution of
electrons can be deformed.'®

2. An electron moving in the medium of the semiconductor should be described
not by the free space energy-momentum relation, but by the semiclassical relation
(Chapter 12)§(k) = &_(k), where Ak is the electronic crystal momentum, and & (k)
is the conduction band energy-momentum relation; i.e., the additional electron
introduced by the impurity should be thought of as being in a superposition of
conduction band levels of the pure host material, which is appropriately altered
by the additional localized charge +e representing the impurity. The electron
can minimize its energy by using only levels near the bottom of the conduction
band, for which the quadratic approximation (28.2) is valid. Should the conduction
band minimum be at a point of cubic symmetry, the electron would then behave
very much like a free electron, but with an effective mass that differs from the free

15 Under very special circumstances it may be possible for the impurities themselves to be regularly

arranged in space. We shall not consider this possibility here.

16 Asweshall see, the binding is quite weak, and the electrons bound to the center are readily liberated
by thermal excitation,

17 This use of macroscopic electrostatics in describing the binding of a single electron is justified by
the fact (established below) that the wave function of the bound electron extends over many hundreds
of angstroms,

18 The connection between small energy gaps and large dielectric constants can also be understood
from the point of view of perturbation theory: The size of the dielectric constant is a measure of the extent
to which a weak clectric field distorts the electronic wave function. But a small energy gap means there
will be small energy denominators, and hence large changes, in the first-order wave functions.



Impurity Levels 579

electron mass m. More generally, the energy wave vector relation will be some
anisotropic quadratic function of k. In either case, however, to 2 first approxi-
mation, we may represent the electron as moving in free space but with a mass
given by some appropriately defined effective mass m*, rather than the free
electron mass. In general, this mass will be smaller than the free electron mass,
often by a factor of 0.1 or even less.

These two observations suggest that we may represent an electron in the presence
of a donor impurity of charge e within the medium of the semiconductor, as a particle
of charge —e and mass m*, moving in free space in the presence of an attractive
center of charge efe. This is precisely the problem of a hydrogen atom, except that
the product — ¢? of the nuclear and electronic charges must be replaced by — e*/e, and
the free electron mass m, by m*. Thus the radius of the first Bohr orbit, a, = h*/me?,
becomes

ro = m—*eao, (28.28)

and the ground-state binding energy, me*/24> = 13.6 eV becomes

%
g=""1 . 136ev. (28.29)
m €

For reasonable values of m*/m and e, the radius ro can be 100 A or more. This
is very important for the consistency of the entire argument, for both the use of the
semiclassical model and the use of the macroscopic dielectric constant are predicated
on the assumption that the fields being described vary slowly on the scale of a lattice
constant.

Furthermore, typical values of m*/m and € can lead to a binding energy & smaller
than 13.6 eV by a factor of a thousand or more. Indeed, since small energy gaps are
generally associated with large dielectric constants, it is almost always the case
that the binding energy of an electron to a donor impurity is small compared with the
energy gap of the semiconductor. Since this binding energy is measured relative to
the energy of the conduction band levels from which the bound impurity level is
formed, we conclude that donor impurities introduce additional electronic levels
at energies &, which are lower than the energy & at the bottom of the conduction
band by an amount that is small compared with the energy gap E, (Figure 28.12).

Figure 28.12 &
Level density for a semiconductor containing both g ‘/
donor and acceptor impurities. The donor levels & are g _———
generally close to the bottom of the conduction band,
€. compared with E,, and the acceptor levels, &,, are
generally close to the top of the valence band, &,. E,

B |

8,— j_\;_

g(®)
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A similar argument can be applied to acceptor impurities, whose valence is one
less than that of the host atoms (e.g., gallium in germanium). Such an impurity can
be represented by the superimposition of a fixed charge —e on top of a host atom,
along with the presence of one less electron in the crystal. The missing electron can
be represented as a bound hole, attracted by the excess negative charge representing
the impurity, with a binding energy that is again small'® on the scale of the energy gap,
E_. In terms of the electron picture this bound hole will be manifested as an additional
electronic level at an energy &, lying slightly above the top of the valence band
(Figure 28.12). The hole is bound when the level is empty. The binding energy of the
hole is just the energy &, — &, necessary to excite an electron from the top of the
valence band into the acceptor level, thereby filling the hole in the vicinity of the
acceptor and creating a free hole in the valence band.

Table 28.2
LEVELS OF GROUP V (DONORS) AND GROUP III (ACCEPTORS)
IMPURITIES IN SILICON AND GERMANIUM

GROUP 11l ACCEPTORS (TABLE ENTRY IS §, — &)

B Al Ga In i
Si 0.046 eV 0.057 0.065 0.16 0.26
Ge 0.0104 0.0102 0.0108 0.0112 0.01

GROUP V DONORS (TABLE ENTRY IS § — &)

P As Sb Bi
Si 0.044eV 0.049 0.039 0.069
Ge 0.0120 0.0127 0.0096 —

ROOM TEMPERATURE ENERGY GAPS (E, = & — &,)

si 1126V
Ge 0.67 eV

Source: P. Aigrain and M. Balkanski, Selected Constants Relative to Semiconductors,
Pergamon, New York, 1961.

The single most important fact about these donor and acceptor levels is that they
lie very close to the boundaries of the forbidden energy region.2® It is far easier
thermally to excite an electron into the conduction band from a donor level, or a
hole into the valence band from an acceptor level, than it is to excite an electron
across the entire energy gap from valence to conduction band. Unless the concentra-
tion of donor and acceptor impurities is very small, they will therefore be a far more
important source of carriers than the intrinsic mechanism of exciting carriers across
the full gap.

¥ For the same reasons as in the case of donor impurities, the binding energy of the hole is quite

weak; i.e., valence band electrons are readily lifted into the acceptor level by thermal excitation,
20 Some measured donor and acceptor levels are given in Table 28.2.
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POPULATION OF IMPURITY LEVELS IN THERMAL EQUILIBRIUM

To assess the extent to which carriers can be thermally excited from impurity levels,
we must compute the mean number of electrons in the levels at a given temperature
and chemical potential. We assume that the density of impurities is low enough
that the interaction of electrons (or holes) bound at different impurity sites is negligible.
We may then calculate the number density of electrons n, (or holes p,) bound to
donor (or acceptor) sites by simply multiplying by the density of donors N, (or
acceptors N,) the mean number of electrons (or holes) there would be if there were
only a single impurity. For simplicity we assume that the impurity introduces only
a single one-electron orbital level>' We calculate its mean occupancy as follows:

Donor Level 1f we ignored electron-electron interactions the level could either be
empty, could contain one electron of either spin, or two electrons of opposite spins.
However, the Coulomb repulsion of two localized electrons raises the energy of the
doubly occupied level so high that double occupation is essentially prohibited.
Quite generally, the mean number of electrons in a system in thermal equilibrium
is given by:
N .o~ PEj=uN)
n) = ZZ;TW"], (28.30)

where the sum is over all states of the system, E ;and N j» are the energy and number
of electrons in state j, and p is the chemical potential. In the present case the system
is a single impurity with just three states: one with no electrons present which makes
no contribution to the energy, and two with a single electron present of energy &,.
Therefore (28.30) gives

2 BlEa—m) 1
O = R 156 | a3
so that??
N |
d
"= e | (28.32)

]

Acceptor Level 1n contrast to a donor level, an acceptor level, when viewed as an
electronic level, can be singly or doubly occupied, but not empty. This is easily seen
from the hole point of view. An acceptor impurity can be regarded as a fixed, negatively
charged attractive center superimposed on an unaltered host atom. This additional
charge —e can weakly bind one hole (corresponding to one electron being in the

#1 There is no general reason why a donor site cannot have more than one bound level, and we assume
a single one only to simplify our discussion. Our gualitative conclusions, however, are quite general
(see Problem 4c).

# Some insight into the curious factor of § that emerges in (28.32) in contrast to the more familiar
distribution function of Fermi-Dirac statistics can be gained by examining what happens as the energy
of the doubly occupied level drops from + oc down to 26,. See Problem 4.
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acceptor level). The binding energy of the hole is &, — &, and when the hole is
“lonized™ an additional electron moves into the acceptor level. However, the con-
figuration in which no electrons are in the acceptor level corresponds to two holes
being localized in the presence of the acceptor impurity, which has a very high
energy due to the mutual Coulomb repulsion of the holes.2*

Bearing this in mind, we can calculate the mean number of electrons at an acceptor
level from (28.30) by noting that the state with no electrons is now prohibited, while
the two-electron state has an energy that is &, higher than the two one-electron states.
Therefore

29” + 2e—ﬁ{ru—2ul Pt +1
2% + ¢ Pea 200 TPty 1

(ny = (28.33)

The mean number of holes in the acceptor level is the difference between the
maximum number of electrons the level can hold (two) and the actual mean number
of electrons in the level ({n)): {p) = 2 — (u), and therefore p, = N, {p) is given by

N,

P = T (28.34)

THERMAL EQUILIBRIUM CARRIER DENSITIES OF IMPURE
SEMICONDUCTORS

Consider a semiconductor doped with Ny donor impurities and N, acceptor impurities
per unit volume. To determine the carrier densities we must generalize the constraint
n. = p. (Eq. (28.18)) that enabled us to find these densities in the intrinsic (pure)
case. We can do this by first considering the electronic configuration at T = 0.
Suppose N; = N,. (The case N; < N, is equally straightforward and leads to the
same result (28.35).) Then 1n a unit volume of semiconductor N, of the N, electrons
supplied by the donor impurities can drop from the donor levels into the acceptor
levels.?* This gives a ground-state electronic configuration in which the valence
band and acceptor levels are filled, N; — N, of the donor levels are filled, and the
conduction band levels are empty. In thermal equilibrium at temperature T the
electrons will be redistributed among these levels, but since their total number remains
the same, the number of electrons in conduction band or donor levels, n, + ny, must
exceed its value at T= 0, N; — N,, by precisely the number of empty levels (i.e.,
holes), p, + p., In the valence band and acceptor levels:

e+ ng=Ny— N, + p, + p. (28.35)

33 When describing acceptor levels as electronic levels one usually ignores the electron that must be
in the level, considering only the presence or absence of the second electron. One describes the level as
empty or filled according to whether the second electron is absent or present.

2+ Since &, is just below the conduction band minimum &, and &, is just above the valence band
maximum, &, we have &, > g, (see Figure 28.12).
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This equation, together with the explicit forms we have found for n, p,, hy, and n,
as functions of g and T, permits one to find p as a function of 7, and therefore to
find the thermal equilibrium carrier densities at any temperature. A general analysis
is rather complicated, and we consider here only a particularly simple and important
case:

Suppose that

&y — u» kgT,
u— &, > kgT. (28.36)

Since &, and &, are close to the edges of the gap, this is only slightly more restrictive
than the nondegeneracy assumption (28.10). Condition (28.36) and the expressions
(28.32) and (28.34) for ny and p, insure that thermal excitation fully “ionizes™ the
impurities, leaving only a negligible fraction with bound electrons or holes: ny « Ny,
Pa < N,. Equation (28.35) therefore becomes

An = nc_pn'_'Nd_'_Nm (28-37)

so Egs. (28.25) and (28.27) now give the carrier densities and chemical potential as
explicit functions of the temperature alone:

te = 1[{Na = Nn}z + 4"iz - 1{Nd - N, (28.38)
2 2

v,

Na = Nu 55k Bl — 1) (28.39)

ny

If the gap is large compared with kgT, the assumption (28.36) we began with
should remain valid unless g is quite far from y; on the scale of k7. According to
Eq. (28.39), this will only happen when [N, — N| is several orders of magnitude
greater than the intrinsic carrier density n;. Therefore Eq. (28.38) correctly describes
the transition from predominantly intrinsic behavior (n; > |[N; — N) well into the
region of predominantly extrinsic behavior (n; « [N — N,|). Expanding (28.38),
we find that at low impurity concentrations the corrections to the purely intrinsic
carrier densities are

{nf} = i %{Nd e Na}! (28'40)

v

while for a considerable range of carrier concentrations in the extrinsic regime,

n = Ny — Nal
2 Nd > N.n;

e il
Pv = N, — N,
/ (28.41)
2 1
n
S =T
“ b Nﬂ > N;.
Py = Na - Nd
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Equation (28.41) is quite important in the theory of semiconducting devices
(Chapter 29). It asserts that the net excess of electrons (or holes) N; — N, introduced
by the impurities is almost entirely donated to the conduction (or valence) band;
the other band has the very much smaller carrier density n,2/(N, — N,), as required
by the law of mass action, (28.24).

If the temperature is too low (or the impurity concentration too high), condition
(28.36) eventually fails to hold, and either ny/N, or p,/N, (but not both) ceases to be
negligible,i.e., one of the impurity typesis no longer fully ionized by thermal excitation.
As a result, the dominant carrier density declines with decreasing temperature
(Figure 28.13).%%

Figure 28.13 z ; =1
Temperature dependence of {7

the majority carrier density
(for the case Ny > N,). The
two high-temperature re-
gimes are discussed in the
text; the very low-tempera-
ture behavior is described in
Problem 6.

\
\\Slopc =-3E
\

1kyT

IMPURITY BAND CONDUCTION

As the temperature approaches zero, so does the fraction of ionized impurities, and
therefore also the density of carriers in the conduction or valence bands. Nevertheless,
some small residual conductivity is observed even at the lowest temperatures. This
is because the wave function of an electron (or hole) bound to an impurity site has
considerable spatial extent, and therefore the overlap of wave functions at different
impurity sites is possible even at fairly low concentrations. When this overlap is
not negligible, it is possible for an electron to tunnel from one site to another. The
resulting transport of charge is known as “impurity band conduction.”

The use of the term “band” in this context is based on an analogy with the tight-
binding method (Chapter 10), which shows that a set of atomic levels with a single
energy can broaden into a band of energies, when wave function overlap is taken
into account. The impurities, however, are usually not situated at the sites of a Bravais
lattice, and one must therefore be cautious in attributing to the impurity “bands”
features associated with electronic bands in periodic potentials.?®

25 This behavior is described more quantitatively in Problem 6.

26 The problem of electronic behavior in aperiodic potentials (which-arises not only in connection
with impurity bands, but also, for example, in the case of disordered alloys) is still in its infancy, and is
one of the very lively areas of current research in solid state physics.
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THE THEORY OF TRANSPORT IN NONDEGENERATE
SEMICONDUCTORS

It is a straightforward consequence (Problem 7) of Fermi-Dirac statistics and the
nondegeneracy assumption (28.10) that the thermal equilibrium velocity distribution
for electrons near a particular conduction band minimum (or holes near a particular
valence band maximum) has the form:
[detm |72 B
f{\a} = h {z_nkBT)-i‘h EXp4— §§ v, Mm.l}‘ . (28.42)

where n is their contribution to the total carrier density.

This is just the form assumed by the thermal equilibrium molecular velocity
distribution in a classical gas, with two exceptions:’

1. In a classical gas, the density of molecules n is specified; in a semiconductor,
n is an extremely sensitive function of temperature.
2. In a classical gas the mass tensor M is diagonal.

As a result, the theory of transport in a nondegenerate semiconductor is similar
to the theory of transport in a classical gas of several charged components,?” and many
results of the classical theory can be applied directly to semiconductors, when
allowance is made for the temperature dependence of the carrier densities and tensor
character of the mass. For example, the anomalously high thermopower of a semi-
conductor (page 563) is only anomalous in comparison with the thermopower of
metals; it is quite in accord with the properties of a classical charged gas. Indeed,
the thermopower of metals was considered anomalously low in the early days of
electron theory, before it was realized that metallic electrons must be described by
Fermi-Dirac, rather than classical, statistics.

PROBLEMS

1. Cyclotron Resonance in Semiconductors
(a) Show that the formulas (28.6) and (28.7) for the cyclotron resonance frequency follow
from substituting the oscillatory velocity (28.5) into the semiclassical equation of motion (28.4),
and requiring that the resulting homogeneous equation have a nonzero solution.
(b) Show that (28.7) and (28.8) are equivalent representations of the cyclotron effective mass
by evaluating (28.7) in the coordinate system in which the mass tensor M is diagonal.

2. Interpretation of Cyclotron Resonance Data

(a) Compare the cyclotron resonance signal from silicon in Figure 28.9b with the geometry
of the conduction band ellipsoids shown in Figure 28.5, and explain why there are only two
electron peaks although there are six pockets of electrons.

27 Such a theory was extensively developed by Lorentz, as an attempt at refining the Drude model
of metals. Although Lorentz’s theory requires substantial modification to be applicable to metals (i.e., the
introduction of degenerate Fermi-Dirac statistics and band structure), many of his results can be applied
to the description of nondegenerate semiconductors with very little alteration.
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(b)  Verify that the positions of the electron resonances in Figure 28.9b are consistent with
the electron effective masses given for silicon on page 569 and the formulas, (28.6) and (28.8),
for the resonance frequency.

(c) Repeat (a) for the resonance in germanium (Figure 28.9a), noting that Figure 28.7 shows
four electron pockets.

(d) Verify that the positions of the electron resonances in F igure 28.9a are consistent with
the electron effective masses given for germanium on page 569.

3. Level Density for Ellipsoidal Pockets

(a) Show that the contribution of an ellipsoidal pocket of electrons to the conduction band
density of levels g.(€), is given by (d/d€)h(€), where h(€) is the number of levels per unit volume in
the pocket with energies less than &.

(b) Show, similarly, that the contribution of an ellipsoidal pocket of holes to the valence
band density of levels g,(€) is given by (d/d€)h(g), where k(&) is the number of electronic levels per
unit volume in the pocket with energies greater than &.

(¢) Using the fact that a volume Q of k-space contains /47 electronic levels per cubic centi-
meter and the formula ¥ = (4n/3)abe for the volume of the ellipsoid x%/a* + y*/b* + z%/c? = 1,
show that formulas (28.14) follow directly from (a) and (b), when the conduction (or valence) band
has a single ellipsoidal pocket.

4. Statistics of Donor Levels
(a) Show that if the energy of a doubly occupied donor level is taken to be 28, + A, then
Eq. (28.32) must be replaced by
1 + e Ba—n+d)

n, =N - - ——
d d ToP€a=w 1 1 4 1= PEa=a+a)

(28.43)

(b) Verify that Eq. (28.43) reduces to (28.32) as A — oo, and that it reduces to the expected
result for independent electrons as A — 0.

(c) Consider a donor impurity with many bound electronic orbital levels, with energies &;.
Assuming that the electron-electron Coulomb repulsion prohibits more than a single electron
from being bound to the impurity, show that the appropriate generalization of (28.32) is

Na
1 + %(Ze—ﬂt&i—mrl

Indicate how (if at all) this alters the results described on pages 582-584.

(28.44)

3. Constraint on Carrier Densities in p-Type Semiconductors

Describe the electronic configuration of a doped semiconductor as T — 0, when N, > N,
Explain why (28.35) (derived in the text when N, > N,) continues to give a correct constraint on
the electron and hole densities at nonzero temperatures, when N, > N,

6. Carrier Statistics in Doped Semiconductors at Low Temperatures
Consider a doped semiconductor with Ny > N,. Assume that the nondegeneracy condition
(28.10) holds, but that (Ng — N_)/n; is so large that (28.39) does not necessarily yield a value of
compatible with (28.36).

(@) Show under these conditions that p, is negligible compared with n,, and p, is negligible
compared with N,, so that the chemical potential is given by the quadratic equation

h!ce—ﬁtfvc—ﬂ} =N;— N, — Ny

.~ T (28.45)
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(b) Deduce from this that if the temperature drops so low that », ceases to be given by
Ny — N, (Eq. (28.41)), then there is a transition to a regime in which

e /Wi“;Nfl ) (28.46)

(c) Show that as the temperature drops still lower, there is another transition to a regime
in which

_ NdNs — NJ) o Plc—td),

n, = (28.47)
a
(d) Derive the results analogous to (28.45)—(28.47) when N, > Ny
7. Velocity Distribution for Carriers in an Ellipsoidal Pocket
Derive the velocity distribution (28.42) from the k-space distribution function
1
fK) e FE- 3 1’ (28.48)

by assuming the nondegeneracy condition (28.10), changing from the variable k to the variable
v, and noting that the cohtribution of the pocket to the carrier density is just n = f dv f(¥).



